Statistics Module 2: Linear Models and Linear Mixed Models with R

14707 1533116033

Statistics Module 2: Linear Models and Linear Mixed Models with R

  • Beginning: Nov 5, 2018
  • End: Nov 8, 2018
  • Speaker: Dr. Fränzi Korner-Nievergelt
  • Oikostat
  • Location: MPIO Möggingen
  • Room: MaxLounge
  • Host: IMPRS for Organismal Biology
  • Contact: mhieber@orn.mpg.de
Linear models (LM) and linear mixed models (LME): Linear Regression, multiple Regression, ANOVA, ANCOVA, model selection (group work), linear mixed models, work on own data
Day 1 LM: Linear Regression, multiple Regression, ANOVA, ANCOVA
  • least-square method
  • parameterisation
  • interactions
  • tests (marginal and sequential)
  • model assumptions
  • predictions
  • introduction to Bayesian data analysis
  • posterior distributions
Day 2 LME: model selection (group work), linear mixed models
  • maximum likelihood, restricted maximum likelihood
  • random and fixed effects
  • likelihood ratio test / bootstrap
  • random slopes-random intercept models
  • possibly further model types depending on the participants wishes
Day 3 LME:
  • model matrix
  • predictions, posterior probabilities of hypotheses
  • preparing data for work on own data
Day 4 projects: work on own data and presentations

Prerequisite for participation: basic knowledge in statistics

Course material book: Korner-Nievergelt, F., T. Roth, S. Von Felten, J. Guélat, B. Almasi, and P. Korner-Nievergelt. 2015. Bayesian Data Analysis in Ecolog Using Linear Models with R, BUGS, and Stan. Elsevier, New York.

 
loading content
Go to Editor View